Towards
Ontology Based Event Processing

RISE SICS, Electrum Kista Stockholm, Sweden

R. Tommasini - Politecnico di Milano
PhD Student @ Politecnico di Milano

Research Interests:
- Semantic Web & Reasoning
- Stream Processing
- Programming Languages
- Distributed Systems
My Advisor

- Assistant Professor at DEIB Politecnico di Milano
- Expert in semantic technologies and stream computing
- Brander of stream reasoning
- 17 years of experience in research and innovation projects
- Startupper: http://www.fluxedo.com

emanuele.dellavalle@polimi.it
@manudellavalle
http://emanueledellavalle.org
http://streamreasoning.org
http://fluxedo.com
What is Stream Reasoning?
Can we detect fire?

*Expected Answer: YES
Can we (actually) detect fire?

Expected Reaction: Perplexed Audience
Summary

Workarounds

Smoke Detection

Humidity Variations (decreases)

Temperature Variations (increases)
This is Stream Reasoning!
Semantic Heterogeneity
Vast
Noisy
Complex Domain
Can we make sense in real-time of heterogeneous, vast, incomplete, and inevitably noisy and data streams in order to support the decision processes of extremely large numbers of concurrent users?
Requirement Analysis

- handle **massive** datasets
- process **data streams**
- cope with **heterogeneous** data
- cope with **incomplete** data
- cope with **noisy** data
- provide **reactive** answers
- access **fine-grained** information
- model **complex** domains

<table>
<thead>
<tr>
<th></th>
<th>Volume</th>
<th>Velocity</th>
<th>Variety</th>
<th>Veracity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Stream Processing vs Semantic Technologies

<table>
<thead>
<tr>
<th>Requirement</th>
<th>SP</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>massive datasets</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>data streams</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>heterogeneous dataset</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>incomplete data</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>noisy data</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>reactive answers</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>fine-grained information access</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>complex domain models</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Stream Reasoning

Cascading Reasoning

RDF Stream Processing (RSP)
Continuous Data Integration
RDF Streams

- An RDF Stream is an **partially** ordered sequence of pairs \((G_i, t_i)\) where
 - \(G_i\) is a [named] RDF graph
 - \(t_i\) is a timestamp.
An Example

({ :s1 :observes :o1 ; :o1 :value 20C }, 1)
({ :s1 :observes :o2 ; :o2 :value 20C }, 2)
({ :s1 :observes :o3 ; :o3 :value 30C }, 3)
({ :s1 :observes :o4 ; :o4 :value 50C }, 4)
RSEP-QL

- A Reference Model for Continuous SPARQL
- Extends CQL to process RDF Graphs
- Introduces the notions of Window and Event Pattern
An Example

REGISTER STREAM <fire>
CONSTRUCT { ?o a :FireObservation ; :sensedBy ?s . }
FROM NAMED WINDOW <w1> [RANGE 5m, STEP 5m] ON STREAM <temp>
WHERE { WINDOW <w1> {
 ?s :observes ?o ; ?o :value ?t
 FILTER (?t > 50C) }
}
Continuous Reasoning

Deductive
Ontology Streams

- An Ontology Stream is a partially ordered sequence of pairs \((A_i, t_i)\) where
 - \(A_i\) is a set of ABox axioms w.r.t. a static TBox \(T\).
 - \(t_i\) is a timestamp.
Windowed Ontology Streams

- An Windowed Ontology Stream $S_{[o,c]}$ is the union of all the Abox axioms Sets A_i with $o<i<c$

- Continuous Reasoning can be reduced to traditional ontological reasoning over a windowed ontology stream
Ontology Based Event Processing

Joint work with P. Bonte, E. Mannens, F. De Turck, F. Ongenae
Cascading Reasoning Approach

Data Integration

We assume RDF Stream as common data model.
Events!

first-class objects in the language
EVENT OfficeTemperatureEvent subClassOf TemperaturEvent and (observationResult some (hasValue >= 40)) and (hasLocation some Office)
EVENT FireEvent {
 MATCH TemperaturEvent
 SEQ SmokeDetectionEvent
 WITHIN (5m) }

Semantic Complex Event Processing Patterns
EVENT FireEvent {
MATCH TemperaturEvent
SEQ SmokeDetectionEvent
WITHIN (5m)
IF {
 EVENT TemperaturEvent
 {?loc0 hasValue ?v}
 EVENT SmokeDetectionEvent
 {?loc1 hasValue ?v
 FILTER (?smokeLevel == 3)}
Future Works
Ontology Based Streaming Data Access
Cascading Reasoning

Rewriting and Interpreting

- including continuous semantics will enable continuous querying over virtual streaming sources;
- including time operators like windows will enable query rewriting into continuous query languages.
Stream Reasoning Applications
Anatomy of a **Streaming Application**

- **Input** Streams
- **Output** Streams
- **Continuous** Tasks
The Web is Streaming
VoCaLS - Vocabulary and Catalog for Linked Streams

- VOCALS allows to **describe streams** and streaming endpoints in a machine readable form.
- VOCALS enables **stream services description**, fostering interoperability between **producers** and **consumers**.
- VOCALS let track **stream transformation provenance** describing the continuous tasks operating on streams.
Questions?

Email: riccardo.tommasini@polimi.it
Twitter: @rictomm
Github: riccardotommasini
Web1: riccardotommasini.com
Web2: streamreasoning.org