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Deep Neural Networks (DNN) at Scale
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Training DNNs with Stochastic Gradient Descent

• Goal: Obtain DNN model that minimises classification error

• Stochastic Gradient Descent (SGD): 
� Consider mini-batch of training data
� Iteratively calculate gradients and update model parameters w

Model parameters w

Er
ro

r

lowest error

random optimal

• converge

Peter Pietzuch - Imperial College London 3



The Problem With Large Batch Sizes

• “Training with large mini-batches is bad for your 
health. More importantly, it’s bad for your test error. 
Friends don’t let friends use mini-batches larger 
than 32.”

� Y. LeCun, @ylecun, April 26, 2018
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Scaling DNN Training on GPUs

• Manager:
• Need a highly-accurate image classification model ASAP

• Highly-Paid Data Scientist:
• OK. I’ll use ResNet-50. It will take ½ month 

on 1 GPU

• M: 
• Throw more hardware at the problem! Need this sooner.

• HPDS: …
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Parallel DNN Training
• With large training datasets, speed up by calculating gradients in parallel 
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Synchronisation Among GPUs

• Parameter server: Maintains global model

GPU 1 GPU 2 GPU 3

model model model

model

gradient gradientgradient

Global
model

• GPUs:
1. Send gradients to 

update global model
2. Synchronise local 

model replicas with 
global model
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What is the Best Batch Size?
• ResNet-32 on Titan X GPU
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Intuition for Small Batch Sizes

• Practical considerations: 
• More frequent model updates minimise bias to initial conditions faster

(i.e. initial weights are forgotten faster)

• Theoretical considerations:
• Small batch sizes explore better the wider minima, which are known to 

exhibit better test accuracy
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Statistical Efficiency Needs Small Batch Sizes
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Hardware Efficiency Needs Large Batch Sizes 

Keep work per GPU constant => scale batch size with #GPUs
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Hardware & Statistical Efficiency

• “Training with large mini-batches is bad for your health. More importantly, it’s 
bad for your test error. Friends don’t let friends use mini-batches larger than 
32.”
� Y. LeCun, @ylecun, April 26, 2018

• The only reason practitioners increase batch size is hardware efficiency

• But best batch size depends on both 
hardware efficiency & statistical efficiency

Peter Pietzuch - Imperial College London 12



Limits of Scaling DNN Training

• HPDS: Managed to train it on 100s of GPUs in 1h!

• M: Great! Make it faster. Use as many resources as you need!

• HPDS: Can’t :( Beyond this point statistical efficiency collapses. Actually,
I straggled to maintain it up to this point…

• M: …

• The story continues. New hardware becomes available. Improved 
communication between workers. Latest results train ResNet-50 in just 
few minutes. But the problem remains.
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The Fundamental Challenge of GPU Scaling

• “If batch size could be made arbitrarily large while still training effectively, 
then training is amenable to standard weak scaling approaches. However, 
if the training rate of some models is restricted to small batch sizes, then 
we will need to find other algorithmic and architectural approaches to 
their acceleration.”
� J. Dean, D. Patterson, X. […], “The Golden Age”, IEEE Micro

• How to design a system that can scale training with multiple GPUs even 
when the preferred batch size is small?
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Problem: Small Batch Sizes Underutilise GPUs
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Idea: Train Multiple Model Replicas per GPU

• Fully exploits task parallelism on GPU

• But we now need to synchronise large number of model replicas...
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How to Synchronise Many Model Replicas?

• Synchronised SGD:
� Average gradients of multiple workers
� Start next training with average model

• Workers start next exploration from same point in weight space
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Idea: Sample Multiple Nearby Points in Space

• Synchronisation using Elastic Averaging SGD (EA-SGD)

• Benefits: 
1. Each replica reuses learning set-up of small batch size
2. Increased exploration through parallelism
3. Average replica helps with direction to good minima
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When To Apply Corrections?

• Synchronously apply corrections to model replicas

• Other techniques
� Control impact of average model using momentum
� Auto-tune number of model replicas
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• Execute concurrent 
tasks to leverage 
GPU concurrency

• Schedule fine-
grained compute & 
synchronisation
tasks

• Minimise amount of 
data transfer among 
different GPUs

Crossbow: Multi-GPU Deep Learning System

(1) Train multiple
models in parallel

(2) Synchronous hierarchical
model averaging

(3) Efficient fine-
grained task engine
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GPU Parallelism with Multiple Model Replicas

• On each GPU, use different streams for training tasks
• Task: series of operations based on computation of model layers

� Task associated with 
(a) model replica and 
(b) batch of training data
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Synchronous Hierarchical Elastic Model Averaging

• Intra-GPU, cross-GPU, and CPU-GPU communication have different 
performance characteristics

• Crossbow uses hierarchical aggregation to avoid bottlenecks
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CrossBow Task Execution Engine
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• Many small tasks for (1) replica training and (2) synchronisation

• CrossBow has GPU/CPU task engine for multiplexing & overlapping small tasks



CrossBow: Benefit of Synchronous Model Averaging
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• VGG-16 with Cifar-100 dataset on Titan X GPUs



CrossBow: Statistical Efficiency with Many Models
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Summary: Scaling Deep Leaning on Multi-GPU Servers

• Need to make training throughput independent from hyper-parameters
� Current need for hyper-parameter tuning too complex
� Need new designs for deep learning systems 

• Crossbow: Scaling DNN training with small batch sizes on many GPUs
� Multiple model replicas per GPU for high hardware efficiency
� Synchronous hierarchical model averaging for high statistical efficiency
� Requires new CPU/GPU task engine design
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Thank You — Any Questions?
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