

Scaling Deep Learning on Multi-GPU Servers

Peter Pietzuch

(with Alexandros Koliousis, Luo Mai, Pijika Watcharapichat, Matthias Weidlich, Paolo Costa)

Imperial College London

http://lsds.doc.ic.ac.uk <prp@imperial.ac.uk>

SICS – Sweden – September 2018

Deep Neural Networks (DNN) at Scale

Peter Pietzuch - Imperial College London

Training DNNs with Stochastic Gradient Descent

Goal: Obtain DNN model that minimises classification error

Stochastic Gradient Descent (SGD):

- Consider mini-batch of training data
- Iteratively calculate gradients and update model parameters w

The Problem With Large Batch Sizes

"Training with large mini-batches is bad for your health. More importantly, it's bad for your test error. Friends don't let friends use mini-batches larger than 32."

- Y. LeCun, @ylecun, April 26, 2018

Scaling DNN Training on GPUs

Manager:

Need a highly-accurate image classification model ASAP

Highly-Paid Data Scientist:

OK. I'll use ResNet-50. It will take 1/2 month on 1 GPU

M:

Throw more hardware at the problem! Need this sooner.

Parallel DNN Training

With large training datasets, speed up by calculating gradients in parallel

Synchronisation Among GPUs

Parameter server: Maintains global model

GPUs:

- 1. Send gradients to update global model
- 2. Synchronise local model replicas with global model

What is the Best Batch Size?

ResNet-32 on Titan X GPU

Intuition for Small Batch Sizes

Practical considerations:

More frequent model updates minimise bias to initial conditions faster (i.e. initial weights are forgotten faster)

Theoretical considerations:

Small batch sizes explore better the wider minima, which are known to exhibit better test accuracy

Statistical Efficiency Needs Small Batch Sizes

Hardware Efficiency Needs Large Batch Sizes

Keep work per GPU constant => scale batch size with #GPUs

Hardware & Statistical Efficiency

"Training with large mini-batches is bad for your health. More importantly, it's bad for your test error. Friends don't let friends use mini-batches larger than 32."

– Y. LeCun, @ylecun, April 26, 2018

The only reason practitioners increase batch size is hardware efficiency

But best batch size depends on both hardware efficiency & statistical efficiency

Limits of Scaling DNN Training

HPDS: Managed to train it on 100s of GPUs in 1h!

M: Great! Make it faster. Use as many resources as you need!

HPDS: Can't :(Beyond this point statistical efficiency collapses. Actually, I straggled to maintain it up to this point...

M: ...

The story continues. New hardware becomes available. Improved communication between workers. Latest results train ResNet-50 in just few minutes. But the problem remains.

Hyper-Parameter Tuning

The Fundamental Challenge of GPU Scaling

"If batch size could be made arbitrarily large while still training effectively, then training is amenable to standard weak scaling approaches. However, if the training rate of some models is restricted to small batch sizes, then we will need to find other algorithmic and architectural approaches to their acceleration."

– J. Dean, D. Patterson, X. [...], "The Golden Age", IEEE Micro

How to design a system that can scale training with multiple GPUs even when the preferred batch size is small?

Problem: Small Batch Sizes Underutilise GPUs

Idea: Train Multiple Model Replicas per GPU

Fully exploits task parallelism on GPU

But we now need to synchronise large number of model replicas...

Peter Pietzuch - Imperial College London

How to Synchronise Many Model Replicas?

Synchronised SGD:

- Average gradients of multiple workers
- Start next training with average model

Workers start next exploration from same point in weight space

Idea: Sample Multiple Nearby Points in Space

Synchronisation using Elastic Averaging SGD (EA-SGD)

Benefits:

Correction rule

- 1. Each replica reuses learning set-up of small batch size
- Increased exploration through parallelism 2.
- 3. Average replica helps with direction to good minima

When To Apply Corrections?

Synchronously apply corrections to model replicas

Other techniques

- Control impact of average model using momentum
- Auto-tune number of model replicas

Crossbow: Multi-GPU Deep Learning System

(1) Train multiple models in parallel

Execute concurrent tasks to leverage GPU concurrency

(2) Synchronous hierarchical model averaging

Minimise amount of data transfer among different GPUs

(3) Efficient finegrained task engine

Reusab	le data buffers
buffer-1	
buffer-2	2
	task
Current	ly in use
buffer-3	
buffer-4	

Schedule finegrained compute & synchronisation tasks

GPU Parallelism with Multiple Model Replicas

On each GPU, use different streams for training tasks

Task: series of operations based on computation of model layers

Synchronous Hierarchical Elastic Model Averaging

Intra-GPU, cross-GPU, and CPU-GPU communication have different performance characteristics

Crossbow uses hierarchical aggregation to avoid bottlenecks

CrossBow Task Execution Engine

Many small tasks for (1) replica training and (2) synchronisation

CrossBow has GPU/CPU task engine for multiplexing & overlapping small tasks

CrossBow: Benefit of Synchronous Model Averaging

CrossBow: Statistical Efficiency with Many Models

ResNet-50 with ImageNet dataset on Titan X GPUs

Summary: Scaling Deep Leaning on Multi-GPU Servers

Need to make training throughput independent from hyper-parameters

- Current need for hyper-parameter tuning too complex
- Need new designs for deep learning systems

Crossbow: Scaling DNN training with small batch sizes on many GPUs

- Multiple model replicas per GPU for high hardware efficiency
- Synchronous hierarchical model averaging for high statistical efficiency
- Requires new CPU/GPU task engine design

Thank You — Any Questions?

Peter Pietzuch https://lsds.doc.ic.ac.uk — prp@imperial.ac.uk

Peter Pietzuch - Imperial College London