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Hardware Acceleration: 
Important but Not Enough

Pipeline (CPU)

Pipeline (GPU/TPU)
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Cross-Platform 
Computation is Inefficient

Stream 
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computationcomputation computation

- expensive data exchange through disk

- No computation sharing optimisations
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A Distributed Runtime 
for Heterogeneous HW

Worker Worker Worker

CDA Platform
worker specific binaries

Rust-Based
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From Weld to Arc
Extending the Weld IR for Streaming

Lars Kroll - KTH



What is Weld?

• A restrictive language for describing data transformations

• Pure expressions without side effects

• A compiler that produces LLVM IR

• Compiler leverages Weld’s declarative syntax to make 
optimisations

Data A Data BWeld
Expression



Weld IR - Types
• Scalar+SIMD types

• bool, u8…u64, i8…i64, f32, f64

• Collections: Read-only data types

• vec, dict

• Builders: Write-only data types

• appender, merger, groupbuilder 

• additive monads

• Structs {…}: more like Tuples really

• Builders are compositional over structs

• I.e. structs of builders are also builders

No read-write 
data types!



Weld IR - Ops
• for is a parallel loop over a collection (or iterator) and into a builder

• merge consumes a builder and a value and produces a new builder 
with the value merged in (according to the builder’s semantics)

• result turns a builder into the corresponding type, i.e.

• appender[i32] into vec[i32] 

• merger[i32,+] into i32 (sum) 

• In Weld you may only call result on a builder once and it 
consumes the builder (linear type)

• if, lookup, math functions, binary ops, casts, c-udfs, etc.



Weld Compilation

• Online (~JIT) compilation

• Quick and easy type inference to support dynamically typed 
front-ends (e.g., Python)

• Monadic properties allow automatic parallelisation and 
vectorisation

• Declarative style allows data access optimisations, such as loop 
fusion and filter reordering



Weld Example

input.map(i: Int => i + 5)Scala

|input:vec[i32]| 
result( 
for(input,  

appender[i32],  
|app, _, i| 
merge(app, i + 5)))

Weld



Weld Example

input.map(i: Int => i + 5)Scala

|input:vec[i32]| 
result( 
for(input:vec[i32],  

appender[i32],  
|app:appender[i32], _:i64, i:i32| 
merge(app, i + 5)))

Weld



Arc
• Arc extends Weld for streaming

• Observation

• Stream Sources are read-only

• Stream Sinks are write-only

• Connect Sinks to Sources via Channels

• Source is a collection stream[T]

• Sink is a builder streamappender[T] 

• Calling result on a Sink returns a Source and creates a Channel between them



Arc Example 1
input.map(i: Int => i + 5)Scala

|source:stream[i32], sink: streamappender[i32]| 
for(source,  

sink,  
|out, i| 
merge(out, i + 5))

Arc



Arc Example 2
input.filter(i: Int => i > 5)Scala

Arc |source:stream[i32], sink: streamappender[i32]| 
for(source,  

sink,  
|out, i| 
if (i > 5, merge(out, i), out))



Arc Example 3
Scala

Arc |source:stream[i32],  
evenSink:streamappender[i32], 
oddSink:streamappender[i32]| 
let mapped = result(for(source, 

streamappender[i32], 
|out, i| merge(out, i + 5))); 

for(mapped, evenSink, |out, i| 
if (i % 2 == 0, merge(out, i), out)); 

for(mapped, oddSink, |out, i| 
if (i % 2 != 0, merge(out, i), out)) 

val mapped = input.map(i: Int => i + 5) 
mapped.filter(i: Int => i % 2 == 0).toSink(...) 
mapped.filter(i: Int => i % 2 != 0).toSink(...) 



Arc Example 3
Scala

Arc |source:stream[i32],  
evenSink:streamappender[i32], 
oddSink:streamappender[i32]| 
for(source,  

{evenSink,oddSink}, 
|out, i| 
let j = i + 5; 
if (j % 2 == 0,  
{merge(out.$1, j),out.$2},  
{out.$1, merge(out.$2, j)}))

val mapped = input.map(i: Int => i + 5) 
mapped.filter(i: Int => i % 2 == 0).toSink(...) 
mapped.filter(i: Int => i % 2 != 0).toSink(...) 



Arc Windows
• Windows are supported using higher-order builders (windower)

• In addition to merge-type and result-type, a windower also has an 
aggregation-type, which must be another builder

• Use Weld functions to 

• determine window start and end points, 

• convert the aggregation-type into the result-type

• convert the windower’s merge-type into the aggregation-builder’s 
merge-type



Arc Compilation
• Ahead-of-time compilation

• Target long-running jobs (allow costly optimisations)

• Constraint-based type-inference solver

• Compile to a deployment graph IR (and from there to Rust)

• Leave pure Weld expressions to the Weld compiler

• Declarative style allows data flow optimisations, such as 
operator fusion and filter reordering


