
knowledgeCONTINUOUS
DEEP
ANALYTICS
(2018-2023)

The Team

Distributed
Computing
Systems

Machine
Learning
Expertise

Lars
Kroll

Paris
Carbone

Christian
Schulte

Seif
Haridi

Theodore
Vasiloudis

Daniel
Gillblad

New MSc/PhDs
• Klas Segeljakt
• Max Meldrum

• Oscar Bjuhr
• Johan Mickos

prog.languages
distr. computing

data stream proc.
distr.computing

compilers
constraint prog.

prog. languages
distr. systems

knowledge∞
Data

PROCESSING

Decision
Making

R
EA

SO
N

IN
G

⋈

⋈

⋈
σθ

σθ

σθ

σθ
π

π

Relational Data Streams

Feature Learning

Tensor Programming
Dynamic
Graphs

Hardware Acceleration:
Important but Not Enough

Pipeline (CPU)

Pipeline (GPU/TPU)

time until decision

critical decision
making

Cross-Platform
Computation is Inefficient

Stream
Tasks

Tensor
Tasks

Graph
Tasks

computationcomputation computation

- expensive data exchange through disk

- No computation sharing optimisations

Computation Sharing

f f’

f + f’
loop fusion
vectorization
….

+less data passes
+no additional overhead

…. ….Data knowledge

Critical Decision Making
demands Efficiency

Pipeline (CPU) - Optimised

Pipeline (GPU/TPU)
- Optimised

time until decision

Pipeline (CPU)

Pipeline (GPU/TPU)

critical decision
making

The Problem

f f’

?

…. ….Data knowledge

The Solution

f f’

f+f’

Intermediate
Representation
(IR)

IR

IR

f’f

Model and Language
Independence

⋈σθ

σ
π

Dynamic
Graphs

Tensors

Relational
Streams

Data Pipeline

…

A Distributed Runtime
for Heterogeneous HW

Worker Worker Worker

CDA Platform
worker specific binaries

Rust-Based

Target Architecture

Available Resources

Stream Metadata

Intermediate
Representation (IR)

Frontends

Logically Optimised
IR

Physically Optimised
IR

Binaries

Distributed JIT
Compilation

Physically Optimised
IR

Binaries

Change in Resources

Change in Load Distribution

Monitoring

Discovered better Plan

constraint
solver

(instruction
selection)

Intermediate
Representation (IR)

Logically Optimised
IR

Physically Optimised
IR

Frontends

Binaries

From Weld to Arc
Extending the Weld IR for Streaming

Lars Kroll - KTH

What is Weld?

• A restrictive language for describing data transformations

• Pure expressions without side effects

• A compiler that produces LLVM IR

• Compiler leverages Weld’s declarative syntax to make
optimisations

Data A Data BWeld
Expression

Weld IR - Types
• Scalar+SIMD types

• bool, u8…u64, i8…i64, f32, f64

• Collections: Read-only data types

• vec, dict

• Builders: Write-only data types

• appender, merger, groupbuilder

• additive monads

• Structs {…}: more like Tuples really

• Builders are compositional over structs

• I.e. structs of builders are also builders

No read-write
data types!

Weld IR - Ops
• for is a parallel loop over a collection (or iterator) and into a builder

• merge consumes a builder and a value and produces a new builder
with the value merged in (according to the builder’s semantics)

• result turns a builder into the corresponding type, i.e.

• appender[i32] into vec[i32]

• merger[i32,+] into i32 (sum)

• In Weld you may only call result on a builder once and it
consumes the builder (linear type)

• if, lookup, math functions, binary ops, casts, c-udfs, etc.

Weld Compilation

• Online (~JIT) compilation

• Quick and easy type inference to support dynamically typed
front-ends (e.g., Python)

• Monadic properties allow automatic parallelisation and
vectorisation

• Declarative style allows data access optimisations, such as loop
fusion and filter reordering

Weld Example

input.map(i: Int => i + 5)Scala

|input:vec[i32]|
result(
for(input,

appender[i32],
|app, _, i|
merge(app, i + 5)))

Weld

Weld Example

input.map(i: Int => i + 5)Scala

|input:vec[i32]|
result(
for(input:vec[i32],

appender[i32],
|app:appender[i32], _:i64, i:i32|
merge(app, i + 5)))

Weld

Arc
• Arc extends Weld for streaming

• Observation

• Stream Sources are read-only

• Stream Sinks are write-only

• Connect Sinks to Sources via Channels

• Source is a collection stream[T]

• Sink is a builder streamappender[T]

• Calling result on a Sink returns a Source and creates a Channel between them

Arc Example 1
input.map(i: Int => i + 5)Scala

|source:stream[i32], sink: streamappender[i32]|
for(source,

sink,
|out, i|
merge(out, i + 5))

Arc

Arc Example 2
input.filter(i: Int => i > 5)Scala

Arc |source:stream[i32], sink: streamappender[i32]|
for(source,

sink,
|out, i|
if (i > 5, merge(out, i), out))

Arc Example 3
Scala

Arc |source:stream[i32],
evenSink:streamappender[i32],
oddSink:streamappender[i32]|
let mapped = result(for(source,

streamappender[i32],
|out, i| merge(out, i + 5)));

for(mapped, evenSink, |out, i|
if (i % 2 == 0, merge(out, i), out));

for(mapped, oddSink, |out, i|
if (i % 2 != 0, merge(out, i), out))

val mapped = input.map(i: Int => i + 5)
mapped.filter(i: Int => i % 2 == 0).toSink(...)
mapped.filter(i: Int => i % 2 != 0).toSink(...)

Arc Example 3
Scala

Arc |source:stream[i32],
evenSink:streamappender[i32],
oddSink:streamappender[i32]|
for(source,

{evenSink,oddSink},
|out, i|
let j = i + 5;
if (j % 2 == 0,
{merge(out.$1, j),out.$2},
{out.$1, merge(out.$2, j)}))

val mapped = input.map(i: Int => i + 5)
mapped.filter(i: Int => i % 2 == 0).toSink(...)
mapped.filter(i: Int => i % 2 != 0).toSink(...)

Arc Windows
• Windows are supported using higher-order builders (windower)

• In addition to merge-type and result-type, a windower also has an
aggregation-type, which must be another builder

• Use Weld functions to

• determine window start and end points,

• convert the aggregation-type into the result-type

• convert the windower’s merge-type into the aggregation-builder’s
merge-type

Arc Compilation
• Ahead-of-time compilation

• Target long-running jobs (allow costly optimisations)

• Constraint-based type-inference solver

• Compile to a deployment graph IR (and from there to Rust)

• Leave pure Weld expressions to the Weld compiler

• Declarative style allows data flow optimisations, such as
operator fusion and filter reordering

