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Deterministic computations

Given a particular input, the same output will be
produced after any number of reruns

For streaming it means:
F(L,..Iy): Vk, F(IiI})_1 ...1o) = Ji

Usually, it is considered as:
F(Ly, Sp): Vi, 38, = S Do ), F (I, Sk) = Ji



Why is determinism important?

Determinism is a desired property in many CS
areas

* Natural for users (people got used to think
sequentially)

 Computations are reproducible and
predictable

* Implies consistency [Stonebreaker et al. The 8
requirements of real-time stream processing.
ACM SIGMOD Record 2005]



Determinism: simple way

Determinism can be easily achieved if
* All computations are sequential
e All transformations are pure functions



Stream processing

e Shared-nothing distributed runtime
* Record-at-a-time model
e Latency is a key performance metric
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Determinism in stream processing

e |tis considered that determinism is too
difficult too achieve

e Systems usually provide low-level interfaces,
which do not guarantee any level of
determinism

* Trade-off between determinism and latency
[Zacheilas et al. Maximizing Determinism in Stream
Processing Under Latency Constraints. DEBS 2017]



What is about batch processing?

 MapReduce is usually implemented
deterministically

* Micro-batching (spark streaming, storm
trident) is also deterministic
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The ultimate question of life, the
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s it possible to combine low-latency and

determinism within distributed stream
processing?
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The ultimate question of life, the
universe, and everything

s it possible to combine low-latency and
determinism within distributed stream
processing?

* |n spite of asynchronous distributed
processing

e Avoiding input buffering
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Dataflow

e Dataflow is a potentially unlimited sequence of data items

 Timestamps can be assigned to data items to define an
order

e Dataflow is expressed in the form of a graph

e Vertices are operations, which are implemented by user-
defined functions

* Edges declare an order between operations
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What do we require to achieve
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e Total order and transformations as pure functions

— We can define synthetic order by assigning timestamps at system entry
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What do we require to achieve
determinism?

e Total order and transformations as pure functions

— We can define synthetic order by assigning timestamps at system entry

 We need to care about the order only in the

operations that are order-sensitive and before
output

* Calculations are partitioned, and order between
items from different partitions does not influence
the result (if they will not be merged)



Unrealistic requirement

* Total order preservation



Unrealistic requirement

e Total order preservation
e Let’s try to rethink streaming computations



Drifting state: idea

Iy = Op(Ig, Sk) = Jk
T4
Sk Sk+1



Drifting state: idea

I, = Op(Ig, Sk) = Jk
- ~ T

newState = combine(prevState, newItem)
handler.update(newState) Sk Sk+1
return newState
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What if we put state directly into the stream?

Drifting state: idea

I, = Op(Ig, Sk) = Jk
T4
Sk Sk+1

> I, Sk = OpUy, Sk) = Jiy Skv1 —




Drifting state: implementation

* Any stateful transformation can be decomposed into map and windowed
grouping operation with a cycle

* Map operation is stateless == order insensitive and pure
* Grouping operation is pure (and even does not contain user-define logic)
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Drifting state: optimistic grouping

* Grouping operation is pure, but order-sensitive

e Buffers before each grouping can increase latency [Li et al.
Out-of-order processing: a new architecture for high-
performance stream systems. VLDB 2008]

* Grouping can be implemented optimistically without
blocking
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Drifting state: optimistic grouping

* Grouping operation is pure, but order-sensitive

* Buffers before each grouping can increase latency [Li et al.
Out-of-order processing: a new architecture for high-
performance stream systems. VLDB 2008]

* Grouping can be implemented optimistically without
blocking P
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Drifting state: the only buffer

* Optimistic approach produces invalid items

* |nvalid items must be filtered out before they are
sent to consumer

* Punctuations (low watermarks) allow releasing
items
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Something is wrong here

e Dataflow graphs are cyclic

e |[tis unclear how to send low watermarks
through the cycles



Implementation notes: acker

checksum( ) = 7469
> checksum( ) = 2345
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Implementation notes: modified acker
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Discussion: drifting state pros

 Determinism is closer than you think!

* We moved from “state as a special item” to “state
as an ordinary item”

— Business-logic becomes stateless

— All guarantees that system provides regarding
ordinary items are satisfied for state

— Any stateful dataflow graph can be expressed using
drifting state model

— Transformations can be non-commutative, but should
be pure

— Single buffer before output per dataflow graph



Discussion: drifting state cons

* |tis harder to write code

— A need for a convenient API

* Optimistic technique can potentially generate
a lot of additional items

* How does drifting state behaves within real-
world problem?
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Experiments: prototype

* FlameStream [https://github.com/flame-stream]

* Java + Akka, Zookeper
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https://github.com/flame-stream
https://github.com/flame-stream
https://github.com/flame-stream
https://github.com/flame-stream

Experiments: task

Incremental inverted index building

— Requires stateful operations

— Contains network shuffle

— Workload is unbalanced due to Zipf’s law
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Experiments: setup

e 10 EC2 micro instances
— 1 GB RAM
— 1 core CPU

* Wikipedia documents as a dataset
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Experiments: latency scalability
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Experiments: throughput scalability

Documents/sec
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Experiments: comparison with
conservative approach

Posting lists update is order-sensitive operation
Buffer elements before this operation
Buffer is flushed on low watermarks

Low watermarks are sent after each input
element to minimize overhead

[Li et al. Out-of-order processing: a new
architecture for high-performance stream
systems. VLDB 2008]

Apache Flink as stream processing system



Latency {ms)

Experiments: comparison with
conservative approach (at most once)
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Latency {ms)

Experiments: comparison with
conservative approach (at most once)
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Experiments: comparison with

conservative approach
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Experiments: comparison with
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Drifting state: conclusion

* Determinism and low-latency is achieved

e Overhead is low

 Throughput is not significantly degraded

* Model is suitable for any stateful dataflows

— If all transformations are pure



What if...

* Map is not pure? 2
— Determinism is lost by definition @
— Correctness is lost Hash1 |1 5 7 |9

Hash2 2 4 8
 Multiple input nodes?
— Timestamp = timestamp@node _id
— Latency 2 out of sync time
— Possible to sync in ~¥10ms

e Acker fails?
— Replication
— Separate ackers for timestamp ranges

SEARCH

i)

€

(1]




Outline

Deterministic computations

Stream processing computational model
Optimistic determinism: drifting state
Experiments

Exactly-once on top of determinism

Yet another experiment



What do we need to add to achieve
exactly-once?

nput replay
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Deduplicate items only at the barrier



What do we need to add to achieve
exactly-once?

* |[nput replay
* Restore consistent state in groupings
* Deduplicate items only at the barrier

— Output items atomically
— Sink stores timestamp of the last received item
— Simply compare timestamps!

I've already received 7,
do not send me items
with timestamp < 8 again!

(] (o] I

ESEARCH
Consumer

SIGIEE
&



Exactly-once: discussion

* Pure streaming
* Deduplication only at the barrier

* Snapshotting and outputting are independent
(are not connected into transaction)



State
snapshoting

Exactly-once: roadmap
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Experiments: latency (50 ms between
checkpoints)
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Experiments: latency (1000 ms
between checkpoints)
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Conclusions

* Single extra requirement: all transformations
are pure

* Results look promising
* A lot of work

— Understand properties and limitations
— Real-life deployment

 We are open for collaboration



Future work

* Real-life deployment
* Efficient determinism and exactly-once can be
used for system-level acceptance testing

— [Trofimov. Consistency maintenance in distributed
analytical stream processing. ADBIS DC 2018]



Papers

 Kuralenok et al. FlameStream: Model and
Runtime for Distributed Stream Processing.
BeyondMR@SIGMOD 2018

* Kuralenok et al. Deterministic model for
distributed speculative stream processing.
ADBIS 2018

* Long paper about exactly-once is on the anvil



