
Deterministic Model for Distributed 
Speculative Stream Processing 

DISCAN 2018 
 

Igor Kuralenok, Artem Trofimov, Nikita Marshalkin, 
and Boris Novikov 

 
JetBrains Research, Saint Petersburg State University 

 



Outline 

• Deterministic computations 

• Stream processing computational model 

• Optimistic determinism: drifting state 

• Experiments 

• Exactly-once on top of determinism 

• Yet another experiment 

2 



Deterministic computations 

Given a particular input, the same output will be 
produced after any number of reruns 

 

For streaming it means: 
𝐹 𝐼𝑛 … 𝐼0 :  ∀𝑘, 𝐹(𝐼𝑘𝐼𝑘−1 … 𝐼0 ) = 𝐽𝑘 

 

Usually, it is considered as: 
𝐹 𝐼𝑛, 𝑆𝑛 :  ∀𝑘, ∃𝑆𝑘 = 𝑆 𝐼𝑘−1 … 𝐼0 , 𝐹(𝐼𝑘, 𝑆𝑘) = 𝐽𝑘  

3 



Why is determinism important? 

Determinism is a desired property in many CS 
areas 

• Natural for users (people got used to think 
sequentially) 

• Computations are reproducible and 
predictable 

• Implies consistency [Stonebreaker et al. The 8 
requirements of real-time stream processing. 
ACM SIGMOD Record 2005] 

 
4 



Determinism: simple way 

Determinism can be easily achieved if 

• All computations are sequential 

• All transformations are pure functions 

 

5 



Stream processing 

• Shared-nothing distributed runtime 

• Record-at-a-time model 

• Latency is a key performance metric 

6 6 



Determinism in stream processing 

• It is considered that determinism is too 
difficult too achieve 

• Systems usually provide low-level interfaces, 
which do not guarantee any level of 
determinism 

• Trade-off between determinism and latency 
[Zacheilas et al. Maximizing Determinism in Stream 
Processing Under Latency Constraints. DEBS 2017] 

 
7 



What is about batch processing? 

• MapReduce is usually implemented 
deterministically 

• Micro-batching (spark streaming, storm 
trident) is also deterministic 

8 



The ultimate question of life, the 
universe, and everything 

Is it possible to combine low-latency and 
determinism within distributed stream 
processing?  

9 



The ultimate question of life, the 
universe, and everything 

Is it possible to combine low-latency and 
determinism within distributed stream 
processing? 

 

• In spite of asynchronous distributed 
processing 

10 



The ultimate question of life, the 
universe, and everything 

Is it possible to combine low-latency and 
determinism within distributed stream 
processing? 

 

• In spite of asynchronous distributed 
processing 

• Avoiding input buffering 

 

11 



Outline 

• Deterministic computations 

• Stream processing computational model 

• Optimistic determinism: drifting state 

• Experiments 

• Exactly-once on top of determinism 

• Yet another experiment 

12 



Dataflow 

• Dataflow is a potentially unlimited sequence of data items 
• Timestamps can be assigned to data items to define an 

order 
• Dataflow is expressed in the form of a graph 
• Vertices are operations, which are implemented by user-

defined functions 
• Edges declare an order between operations 

13 



Physical deployment 

14 



Outline 

• Deterministic computations 

• Stream processing computational model 

• Optimistic determinism: drifting state 

• Experiments 

• Exactly-once on top of determinism 

• Yet another experiment 

15 



What do we require to achieve 
determinism? 

• Total order and transformations as pure functions 
– We can define synthetic order by assigning timestamps at system entry 

16 



What do we require to achieve 
determinism? 

• Total order and transformations as pure functions 
– We can define synthetic order by assigning timestamps at system entry 

• We need to care about the order only in the 
operations that are order-sensitive and before 
output 
 

17 



What do we require to achieve 
determinism? 

• Total order and transformations as pure functions 
– We can define synthetic order by assigning timestamps at system entry 

• We need to care about the order only in the 
operations that are order-sensitive and before 
output 

• Calculations are partitioned, and order between 
items from different partitions does not influence 
the result (if they will not be merged) 

 
 

18 



Unrealistic requirement 

• Total order preservation 

19 



Unrealistic requirement 

• Total order preservation 

• Let’s try to rethink streaming computations 

20 



Drifting state: idea 

21 

𝐼𝑘 → Op 𝐼𝑘 , 𝑆𝑘 → 𝐽𝑘 

                                               ↑ ↓ 

                                             𝑆𝑘 𝑆𝑘+1 



Drifting state: idea 

22 

𝐼𝑘 → Op 𝐼𝑘 , 𝑆𝑘 → 𝐽𝑘 

                                               ↑ ↓ 

                                             𝑆𝑘 𝑆𝑘+1 
newState = combine(prevState, newItem) 
handler.update(newState) 
return newState 



Drifting state: idea 

23 

𝐼𝑘 → Op 𝐼𝑘 , 𝑆𝑘 → 𝐽𝑘 

                                               ↑ ↓ 

                                             𝑆𝑘 𝑆𝑘+1 

What if we put state directly into the stream? 

𝐼𝑘 , 𝑆𝑘 → Op 𝐼𝑘 , 𝑆𝑘 → 𝐽𝑘 , 𝑆𝑘+1 



Drifting state: implementation 

• Any stateful transformation can be decomposed into map and windowed 
grouping operation with a cycle 

• Map operation is stateless == order insensitive and pure 

• Grouping operation is pure (and even does not contain user-define logic) 

 

24 



Drifting state: optimistic grouping 

• Grouping operation is pure, but order-sensitive 
• Buffers before each grouping can increase latency [Li et al. 

Out-of-order processing: a new architecture for high-
performance stream systems. VLDB 2008] 

• Grouping can be implemented optimistically without 
blocking 

25 



Drifting state: optimistic grouping 

• Grouping operation is pure, but order-sensitive 
• Buffers before each grouping can increase latency [Li et al. 

Out-of-order processing: a new architecture for high-
performance stream systems. VLDB 2008] 

• Grouping can be implemented optimistically without 
blocking 

26 



Drifting state: the only buffer 

• Optimistic approach produces invalid items 
• Invalid items must be filtered out before they are 

sent to consumer 
• Punctuations (low watermarks) allow releasing 

items 

27 



Something is wrong here 

• Dataflow graphs are cyclic  

• It is unclear how to send low watermarks 
through the cycles 

28 



Implementation notes: acker 

29 



Implementation notes: modified acker 

30 



Discussion: drifting state pros 

• Determinism is closer than you think! 
• We moved from “state as a special item” to “state 

as an ordinary item” 
– Business-logic becomes stateless 
– All guarantees that system provides regarding 

ordinary items are satisfied for state 
– Any stateful dataflow graph can be expressed using 

drifting state model 
– Transformations can be non-commutative, but should 

be pure 
– Single buffer before output per dataflow graph 

31 



Discussion: drifting state cons 

• It is harder to write code 

– A need for a convenient API 

• Optimistic technique can potentially generate 
a lot of additional items 

• How does drifting state behaves within real-
world problem? 

32 



Outline 

• Deterministic computations 

• Stream processing computational model 

• Optimistic determinism: drifting state 

• Experiments 

• Exactly-once on top of determinism 

• Yet another experiment 

33 



Experiments: prototype 

• FlameStream  [https://github.com/flame-stream]  

• Java + Akka, Zookeper 

34 

https://github.com/flame-stream
https://github.com/flame-stream
https://github.com/flame-stream
https://github.com/flame-stream


Experiments: task 

Incremental inverted index building 

– Requires stateful operations 

– Contains network shuffle 

– Workload is unbalanced due to Zipf’s law 

 

 

35 



Experiments: setup 

• 10 EC2 micro instances 

– 1 GB RAM 

– 1 core CPU 

• Wikipedia documents as a dataset 

36 



Experiments: overhead 

37 



Experiments: latency scalability 

38 



Experiments: throughput scalability 

39 Nodes 

D
o

cu
m

en
ts

/s
ec

 



Experiments: comparison with 
conservative approach 

40 

• Posting lists update is order-sensitive operation 

• Buffer elements before this operation 

• Buffer is flushed on low watermarks 

• Low watermarks are sent after each input 
element to minimize overhead 

• [Li et al. Out-of-order processing: a new 
architecture for high-performance stream 
systems. VLDB 2008] 

• Apache Flink as stream processing system 



Experiments: comparison with 
conservative approach (at most once) 

41 

10 nodes 5 nodes 



Experiments: comparison with 
conservative approach (at most once) 

42 

10 nodes 5 nodes 



Experiments: comparison with 
conservative approach 

43 



Experiments: comparison with 
conservative approach 

44 

D
o

cu
m

en
ts

/s
ec

 

Nodes 



Drifting state: conclusion 

• Determinism and low-latency is achieved 

• Overhead is low 

• Throughput is not significantly degraded 

• Model is suitable for any stateful dataflows  

– If all transformations are pure 

45 



• Map is not pure? 
– Determinism is lost by definition 
– Correctness is lost 

 
• Multiple input nodes? 

– Timestamp = timestamp@node_id 
– Latency ≥ out of sync time 
– Possible to sync in ~10ms 

• Acker fails? 
– Replication 
– Separate ackers for timestamp ranges 

 
 

 
 

What if… 

46 



Outline 

• Deterministic computations 

• Stream processing computational model 

• Optimistic determinism: drifting state 

• Experiments 

• Exactly-once on top of determinism 

• Yet another experiment 

47 



What do we need to add to achieve 
exactly-once? 

• Input replay 

• Restore consistent state in groupings 

• Deduplicate items only at the barrier 

 

 

48 



What do we need to add to achieve 
exactly-once? 

• Input replay 

• Restore consistent state in groupings 

• Deduplicate items only at the barrier 
– Output items atomically 

– Sink stores timestamp of the last received item 

– Simply compare timestamps! 

 

 

49 



Exactly-once: discussion 

• Pure streaming 

• Deduplication only at the barrier 

• Snapshotting and outputting are independent 
(are not connected into transaction) 

50 



Exactly-once: roadmap 

51 



Outline 

• Deterministic computations 

• Stream processing computational model 

• Optimistic determinism: drifting state 

• Experiments 

• Exactly-once on top of determinism 

• Yet another experiment 

52 



Experiments: latency (50 ms between 
checkpoints) 

53 

50 ms between state snapshots 



Experiments: latency (1000 ms 
between checkpoints) 

54 

1000 ms between state snapshots 



Experiments: throughput 

55 

D
o

cu
m

en
ts

/s
ec

 

Nodes 



Conclusions 

• Single extra requirement: all transformations 
are pure 

• Results look promising 

• A lot of work 

– Understand properties and limitations 

– Real-life deployment 

• We are open for collaboration 

 

56 



Future work 

• Real-life deployment 

• Efficient determinism and exactly-once can be 
used for system-level acceptance testing 

– [Trofimov. Consistency maintenance in distributed 
analytical stream processing. ADBIS DC 2018] 

 

57 



Papers 

• Kuralenok et al. FlameStream: Model and 
Runtime for Distributed Stream Processing. 
BeyondMR@SIGMOD 2018 

• Kuralenok et al. Deterministic model for 
distributed speculative stream processing. 
ADBIS 2018 

• Long paper about exactly-once is on the anvil 

58 


