RESEARCH

DISCAN 2018

lgor Kuralenok, Artem Trofimov, Nikita Marshalkin,
and Boris Novikov

JetBrains Research, Saint Petersburg State University

Outline

Deterministic computations

Stream processing computational model
Optimistic determinism: drifting state
Experiments

Exactly-once on top of determinism

Yet another experiment

Deterministic computations

Given a particular input, the same output will be
produced after any number of reruns

For streaming it means:
F(L,..Iy): Vk, F(IiI})_1 ...1o) = Ji

Usually, it is considered as:
F(Ly, Sp): Vi, 38, = S Do), F (I, Sk) = Ji

Why is determinism important?

Determinism is a desired property in many CS
areas

* Natural for users (people got used to think
sequentially)

 Computations are reproducible and
predictable

* Implies consistency [Stonebreaker et al. The 8
requirements of real-time stream processing.
ACM SIGMOD Record 2005]

Determinism: simple way

Determinism can be easily achieved if
* All computations are sequential
e All transformations are pure functions

Stream processing

e Shared-nothing distributed runtime
* Record-at-a-time model
e Latency is a key performance metric

Claud Dakafow

ing

STORM"

Distributed - Resilient «+ Real-time

— éz) APACHE

Determinism in stream processing

e |tis considered that determinism is too
difficult too achieve

e Systems usually provide low-level interfaces,
which do not guarantee any level of
determinism

* Trade-off between determinism and latency
[Zacheilas et al. Maximizing Determinism in Stream
Processing Under Latency Constraints. DEBS 2017]

What is about batch processing?

 MapReduce is usually implemented
deterministically

* Micro-batching (spark streaming, storm
trident) is also deterministic

.S'pcwriz
Streaming

The ultimate question of life, the
universe, and everything
s it possible to combine low-latency and

determinism within distributed stream
processing?

The ultimate question of life, the
universe, and everything

s it possible to combine low-latency and
determinism within distributed stream
processing?

* |n spite of asynchronous distributed
processing

The ultimate question of life, the
universe, and everything

s it possible to combine low-latency and
determinism within distributed stream
processing?

* |n spite of asynchronous distributed
processing

e Avoiding input buffering

Outline

Deterministic computations

Stream processing computational model
Optimistic determinism: drifting state
Experiments

Exactly-once on top of determinism

Yet another experiment

Dataflow

e Dataflow is a potentially unlimited sequence of data items

 Timestamps can be assigned to data items to define an
order

e Dataflow is expressed in the form of a graph

e Vertices are operations, which are implemented by user-
defined functions

* Edges declare an order between operations

ESEARCH

P
= RESEARCH

Physical deployment

14

Outline

Deterministic computations

Stream processing computational model
Optimistic determinism: drifting state
Experiments

Exactly-once on top of determinism

Yet another experiment

What do we require to achieve
determinism?

e Total order and transformations as pure functions

— We can define synthetic order by assigning timestamps at system entry

What do we require to achieve
determinism?

e Total order and transformations as pure functions

— We can define synthetic order by assigning timestamps at system entry

 We need to care about the order only in the

operations that are order-sensitive and before
output

What do we require to achieve
determinism?

e Total order and transformations as pure functions

— We can define synthetic order by assigning timestamps at system entry

 We need to care about the order only in the

operations that are order-sensitive and before
output

* Calculations are partitioned, and order between
items from different partitions does not influence
the result (if they will not be merged)

Unrealistic requirement

* Total order preservation

Unrealistic requirement

e Total order preservation
e Let’s try to rethink streaming computations

Drifting state: idea

Iy = Op(Ig, Sk) = Jk
T4
Sk Sk+1

Drifting state: idea

I, = Op(Ig, Sk) = Jk
- ~ T

newState = combine(prevState, newItem)
handler.update(newState) Sk Sk+1
return newState

_ _J

e Tl
= RESEARCH

What if we put state directly into the stream?

Drifting state: idea

I, = Op(Ig, Sk) = Jk
T4
Sk Sk+1

> I, Sk = OpUy, Sk) = Jiy Skv1 —

Drifting state: implementation

* Any stateful transformation can be decomposed into map and windowed
grouping operation with a cycle

* Map operation is stateless == order insensitive and pure
* Grouping operation is pure (and even does not contain user-define logic)

///_—\\

3 4 —> Sum — (7] (4]

o/ j@

SEARCH 24

Drifting state: optimistic grouping

* Grouping operation is pure, but order-sensitive

e Buffers before each grouping can increase latency [Li et al.
Out-of-order processing: a new architecture for high-
performance stream systems. VLDB 2008]

* Grouping can be implemented optimistically without
blocking

Y 80
vesti (1579 (1]3]

Hash2 2 4 8

ESEARCH

Drifting state: optimistic grouping

* Grouping operation is pure, but order-sensitive

* Buffers before each grouping can increase latency [Li et al.
Out-of-order processing: a new architecture for high-
performance stream systems. VLDB 2008]

* Grouping can be implemented optimistically without
blocking P

8 Q% S
o) SIS
) ¥ “\?‘)

188
Hash1 1 5 79 EE
(1]s)

Hash2 2 4 8

- 3
= RESEARCH 26

Drifting state: the only buffer

* Optimistic approach produces invalid items

* |nvalid items must be filtered out before they are
sent to consumer

* Punctuations (low watermarks) allow releasing
items

4 2 {
b 5 o
9/ g 8 [5]— —> g |3
& 6 &
7 ?uﬂctl

Z 1ound Consumer

SEARCH

Something is wrong here

e Dataflow graphs are cyclic

e |[tis unclear how to send low watermarks
through the cycles

Implementation notes: acker

checksum() = 7469
> checksum() = 2345

. A)
0\4.&673 checksum() = 6731

21 . \21 21 21
Q

SEARCH

Implementation notes: modified acker

GT | XOR checksum(|
17 | 0 , ~
minimal time ACk.. ./ ~g13Y)
—>» | 21 | 7469 K2y - " w2 checksum(
A /" <3¢ ., 52349
C/((2 h > S N 2\ \’\2'3A
469) P\GK\ \\\
2 SR 4 2
| \/
—_—> >

-
E@ RESEARCH

1) =7469
checksum(_/’) = 2345

) = 6731

30

Discussion: drifting state pros

 Determinism is closer than you think!

* We moved from “state as a special item” to “state
as an ordinary item”

— Business-logic becomes stateless

— All guarantees that system provides regarding
ordinary items are satisfied for state

— Any stateful dataflow graph can be expressed using
drifting state model

— Transformations can be non-commutative, but should
be pure

— Single buffer before output per dataflow graph

Discussion: drifting state cons

* |tis harder to write code

— A need for a convenient API

* Optimistic technique can potentially generate
a lot of additional items

* How does drifting state behaves within real-
world problem?

Outline

Deterministic computations

Stream processing computational model
Optimistic determinism: drifting state
Experiments

Exactly-once on top of determinism

Yet another experiment

Experiments: prototype

* FlameStream [https://github.com/flame-stream]

* Java + Akka, Zookeper

Producers Consumer

Vo :; :
' | Node #1 | i
: ACKER | :
Apache |
\\ Kafka
=
HDFS

yAIN

p=
o
£
3]
>
)

| Kafka // O AN 5
i —— a i
'l Hors | 1 (Y i 5
: :) Apache ' :
' K Persistent ' s’
------------ ZooKeeper
T
— RESEARCH 34

https://github.com/flame-stream
https://github.com/flame-stream
https://github.com/flame-stream
https://github.com/flame-stream

Experiments: task

Incremental inverted index building

— Requires stateful operations

— Contains network shuffle

— Workload is unbalanced due to Zipf’s law

Dogb‘ Caltj

Wikipedia
articles

ESEARCH

split into

"paw": [12@Cat]

word

>
"nose": [124@Cat]

Term
positions

/Posting lists

"tail": [134@Dog, 43@Pig]
"nose": [124@Cat]

-

~

"paw": [234@Animal, 12@Cat]

"tail"[1] = 43@Pig

—>
"nose"[0] = 124@Cat

)

Index diff

Experiments: setup

e 10 EC2 micro instances
— 1 GB RAM
— 1 core CPU

* Wikipedia documents as a dataset

: overhead

tsS

Experimen

37

1.30
1.25
1.20
1.15
1.10
1.05

m ones

1.4
1.1

RESEARCH

BRAINS

Experiments: latency scalability

300
— 10 workers
8 workers
750 —— 6 workers
2001

Latency (ms)
a

1001

501

i
[}

yy

."JJ n'll

- "i:rj J

e
_— T ___.-'" l/-"/
z"/ — o
_ f"f.—_-:(d/f—/fd_d_f

80 o2 04

-
E@ RESEARCH

0.6

0.8

1.0 0.990 0.992 0.994 0.996 0.998 1.000

Quantiles

38

Experiments: throughput scalability

Documents/sec

8 RESEARCH

80
70
60
50
40
30
20
10

0

Nodes

10

39

Experiments: comparison with
conservative approach

Posting lists update is order-sensitive operation
Buffer elements before this operation
Buffer is flushed on low watermarks

Low watermarks are sent after each input
element to minimize overhead

[Li et al. Out-of-order processing: a new
architecture for high-performance stream
systems. VLDB 2008]

Apache Flink as stream processing system

Latency {ms)

Experiments: comparison with
conservative approach (at most once)

10 nodes

N 50 %-ile N 75 %-ile W95 %-ile 99 -ile

120

100

o
o

a0

=
L=

20

50 rps 33 rps 20 rps 10 rps
A+ * *

Shms
E@ RESEARCH

200

et
L
=]

Latency (ms)
g

30

5 nodes

50 %-ile BN 75 %-ile BN 95 Y%-ile 99 Y-ile

50 rps 33 rps 20 rps 10 rps
* *

41

Latency {ms)

Experiments: comparison with
conservative approach (at most once)

10 nodes 5 nodes
I 50 %-ile 75 %-ile 95 Y%-ile 99 Y-jle /-N%—ile 75 %-le 95 Y%-le 99 Y-jle
120
20
100
an by 190
E
ol a
=
a1
o
s
40
20
1]
50 rps 33 rps 20 rps 10 rps
4 4 +
o & & &F & @& & &
s ok ok wh
& & & &
I & o &
o ¢ ¥ o
JET I

S RESEARCH 42

Experiments: comparison with

conservative approach
70

60
50
40
30
20
10

0
Barrier Order
—
- Enforcer

Experiments: comparison with

Documents/sec

80

70

60

50

40

30

20

10

conservative approach

Nodes

=

10

FlameStream

Flink

Drifting state: conclusion

* Determinism and low-latency is achieved

e Overhead is low

 Throughput is not significantly degraded

* Model is suitable for any stateful dataflows

— If all transformations are pure

What if...

* Map is not pure? 2
— Determinism is lost by definition @
— Correctness is lost Hash1 |1 5 7 |9

Hash2 2 4 8
 Multiple input nodes?
— Timestamp = timestamp@node _id
— Latency 2 out of sync time
— Possible to sync in ~¥10ms

e Acker fails?
— Replication
— Separate ackers for timestamp ranges

SEARCH

i)

€

(1]

Outline

Deterministic computations

Stream processing computational model
Optimistic determinism: drifting state
Experiments

Exactly-once on top of determinism

Yet another experiment

What do we need to add to achieve
exactly-once?

nput replay

Restore consistent state in groupings

Deduplicate items only at the barrier

What do we need to add to achieve
exactly-once?

* |[nput replay
* Restore consistent state in groupings
* Deduplicate items only at the barrier

— Output items atomically
— Sink stores timestamp of the last received item
— Simply compare timestamps!

I've already received 7,
do not send me items
with timestamp < 8 again!

(] (o] I

ESEARCH
Consumer

SIGIEE
&

Exactly-once: discussion

* Pure streaming
* Deduplication only at the barrier

* Snapshotting and outputting are independent
(are not connected into transaction)

State
snapshoting

Exactly-once: roadmap

Microbatching m
g Storm Trident

Determinism
Total order

— my ~—

S \ame
/ Optimistic F Idempotence

wiinee! T~

Replay on

failures Exactly-once

\ Strong
> productions
‘No total order\
\
Transactions
At-least-once

RESEARCH 51

Outline

Deterministic computations

Stream processing computational model
Optimistic determinism: drifting state
Experiments

Exactly-once on top of determinism

Yet another experiment

Experiments: latency (50 ms between
checkpoints)

B 50 %-ile

lcetream, At-Most-Once 75 %eile
Bl 95 %e-ile

Flink, At-Most-Once 99 %-ile

lcetream, At-Least-Once

Flink, At-Least-Once

lcetream, Exactly-Once

Flink, Exactly-Once

=

50 100 150 200 250 300 350 400
Latency(ms})

50 ms between state snapshots

i Tl
E@ RESEARCH

Experiments: latency (1000 ms
between checkpoints)

B 50 %-ile

lcetraam, At-Most-Once 75 ile
95 %-ile

Flink, At-Most-Once 89 %-ile

lcetream, At-Least-Once

Flink, At-Least-Once

lcetream, Exactly-Once

o] 200 400 &00 800 1000
Latency(ms)

1000 ms between state snapshots

i Tl
E@ RESEARCH

54

n*

m
(%]
m
>
A
(@]
I

Experiments: throughput

80

- |

60

50 l
40 FlameStream

m Flink
30 —

20 ——

Documents/sec

10 ———

Nodes

Conclusions

* Single extra requirement: all transformations
are pure

* Results look promising
* A lot of work

— Understand properties and limitations
— Real-life deployment

 We are open for collaboration

Future work

* Real-life deployment
* Efficient determinism and exactly-once can be
used for system-level acceptance testing

— [Trofimov. Consistency maintenance in distributed
analytical stream processing. ADBIS DC 2018]

Papers

 Kuralenok et al. FlameStream: Model and
Runtime for Distributed Stream Processing.
BeyondMR@SIGMOD 2018

* Kuralenok et al. Deterministic model for
distributed speculative stream processing.
ADBIS 2018

* Long paper about exactly-once is on the anvil

